
HTAR Reference Manual - 1

UCRL-WEB-200720

HTAR Reference Manual

HTAR Reference Manual - 2

Table of Contents

Preface 3
Introduction 4

HTAR's Role 4
How HTAR Works 6
TAR and HTAR Compared 8

How to Use HTAR 10
HTAR Execute Line 10
HTAR Error Conditions 15
HTAR Limitations and Restrictions 17
HTAR Environment Variables 20
Executing HTAR Using Hopper 21

HTAR Options 22
Action Options 22
Archive Option 24
Control Options 25

HTAR Examples 33
Creating an HTAR Archive File 33
Retrieving Files from within an Archive 35
Using CRC Checksums 37
Verify Archive Contents During Creation 39
Rebuilding a Missing Index 41
Specifying Very Many Files 43
Archiving Between Nonstorage Machines 44

Disclaimer 46
Keyword Index 47
Alphabetical List of Keywords 48
Date and Revisions 49

HTAR Reference Manual - 3

Preface

Scope: This HTAR Reference Manual explains the roles, usage, options, and features of LC's
locally developed file-bundling and storage utility (the "HPSS Tape Archiver" or HTAR).
HTAR is specifically designed to very efficiently transfer a very large number of (related)
files as a manageable archive or library (to storage by default, or elsewhere). Besides
introducing the HTAR execute line, control options, and environment variables, the text
also compares HTAR with standard TAR and provides annotated examples of using
HTAR for the special tasks it is designed to handle (such as retrieving files from within
a stored archive, successfully managing very large archives, or depositing an archive in a
designated nonstorage location).

Availability: HTAR runs on all LC production IBM (AIX) and Linux/CHAOS machines, on both open
and secure graphics machines, and on many LC special-purpose Suns.

Consultant: For help contact the LC customer service and support hotline at 925-422-4531 (open e-
mail: lc-hotline@llnl.gov, SCF e-mail: lc-hotline@pop.llnl.gov).

Printing: The print file for this document can be found at:

OCF: https://computing.llnl.gov/LCdocs/htar/htar.pdf
SCF: http://www.llnl.gov/LCdocs/htar/htar_scf.pdf

http://www.llnl.gov/LCdocs/htar/htar.pdf

HTAR Reference Manual - 4

Introduction

HTAR's Role

GOALS.
HTAR ("HPSS Tape Archiver") is an LC-designed TAR-like utility program that makes TAR-compatible
archive (library) files but with storage support and enhanced archive-management features. Despite its
misleading name, HTAR does not write files to tape, but to LC's open or secure archival storage (HPSS) disk
farm (or, optionally, to other specified LC hosts).

HTAR's enhancements include its ability to:

• bundle many small files together in memory (without using more local disk space, as standard TAR
requires) for more efficient handling and transfer,

• send the resulting large archive file directly to (open or secure) storage without your needing to invoke
FTP separately (or to another LC machine if you use -F),

• retrieve individual files from a stored archive without moving the whole large archive back to your local
machine first (or, optionally, without even staging the whole archive to disk), and

• accelerate transfers to and from storage by deploying multiple threads and by automatically using as many
parallel interfaces to storage as are available on the (production) machine where it runs.

• easily create incremental backup archives to supplement a master archive with (only) files recently
changed (with -n).

SCOPE.
A subsection of this introduction (below (page 8)) compares traditional UNIX TAR with LC's enhanced
HTAR feature by feature to reveal the value of this added tool. But in general HTAR maintains full output
compatibility with the POSIX 1003.1 standard TAR format while successfully archiving hundreds or even
thousands of incoming files, handling files of greatly mixed sizes or types, and imposing no limit on the total
size of the archive files that it builds.

PERFORMANCE.
HTAR is designed to run quickly, especially when transferring large archives to storage. HTAR does not invoke
the separate parallel FTP (PFTP) client, but uses its own logic to efficiently manage parallel transfers to and
from remote archive files (on LC machines). Its use of multiple concurrent threads and HPSS parallel disk
striping enable HTAR to achieve the maximum transfer rates to storage. In most cases, creating a stored archive
directly using HTAR will be much faster than either creating a local TAR file and then copying it to storage
with HSI or piping TAR output into an FTP connection to HPSS or into HSI.

FILE MANAGEMENT.
HTAR can store archive-member files as large as 68 Gbyte. There is no maximum size for a whole HTAR
archive other than site-imposed restrictions or amount of space available. HTAR makes single copies of each
stored archive by default, but you can request dual-copy storage (for extra safety) of a mission critical archive
of any size by using HTAR's -Y dualcopy option. (The HTAR -Y dualcopy option can also be specified to pick
the COS for either the archive file, the index file, or both, or to specify automatic COS selection.) NFT's DIR -h
command-with-option combination reveals the COS value of stored files (in output column 3).

HTAR Reference Manual - 5

THIS GUIDE.
Because HTAR combines two features usually separate (file bundling and file storage), having some
understanding of how it works can help you use it effectively. So one subsection below shows and explains
the relationship among the three files (the archive file, the index file, and the consistency file) that HTAR uses
to manage every transaction. Also shown is a feature-by-feature comparison of HTAR with traditional UNIX
TAR.

One section (page 10) in this manual tells how to run HTAR, and spells out common error conditions,
known limitations (with work-arounds), and HTAR environment variables. A second section (page 22)
describes the function of each HTAR option (distinguishing the required action options from the control
options). A third section (page 33) gives annotated step-by-step examples of how to use HTAR to handle
common file-archiving tasks and problems (including creation of archives containing very many files and
optional transfer of archives to or from nonstorage LC machines).

HTAR users may also benefit from familiarity with another LC-developed specialty tool that provides
nonstandard file-handling and file-transfer features linked to file storage, namely NFT (see the NFT Reference
Manual (URL: https://computing.llnl.gov/LCdocs/nft) for details). HTAR itself does not, however, use NFT's
"persistence" mechanisms to manage file-storage delays. For a general introduction to LC storage tools and
techniques, see EZSTORAGE (URL: https://computing.llnl.gov/LCdocs/ezstorage). Hopper (page 21),
LC's graphical file-handling interface, can also serve as a front end for HTAR in situations where Hopper's
scalability limits are not too severe. Also of interest to the HTAR user is the HSI utility, which provides a user-
friendly UNIX-style interface to storage. HSI can recursively store, retrieve, and list entire trees with a single
command. Consult the HSI manual (URL: https://computing.llnl.gov/LCdocs/hsi) for details.

https://computing.llnl.gov/LCdocs/nft
https://computing.llnl.gov/LCdocs/nft
https://computing.llnl.gov/LCdocs/ezstorage
https://computing.llnl.gov/LCdocs/hsi

HTAR Reference Manual - 6

How HTAR Works

HTAR makes an archive (or library) file in the standard POSIX 1003.1 TAR format, which allows TAR
to open any HTAR archive file. But HTAR offers more services than ordinary TAR, and it therefore needs
extra internal machinery to support those services. While much of this extra machinery is hidden during normal
use, some of it reveals itself in HTAR status messages or command responses that might prove surprising or
confusing without some insight into how HTAR works. So this section briefly explains how HTAR makes an
archive file and the role that several support files play in that process.

Archive File (name.tar)

When you run HTAR with the create-archive (-c) option, the program first opens a
connection to storage (HPSS). It then deploys multiple threads to transfer in parallel (but
not with PFTP) the local disk files that you specify (the "archive members" as illustrated
in the top part of Figure 1) into a TAR-format envelope file created (unless you request
otherwise) in your storage home directory (illustrated in the bottom part of Figure 1). This
archive file never exists on local disk (unless you demand it with the -E option), even in
temporary directories on the machine where HTAR runs. Instead, HTAR reads the member
files piecewise into its internal buffers and moves the data directly to HPSS (or to another
host specified by -F), where it assembles the archive (shown as archive.tar in Figure 1).

HTAR simultaneously builds a separate index file (outside the archive) and a little
consistency file (deposited last inside the archive), discussed below. HPSS is very reliable,
but HTAR automatically uses a storage class of service (COS) that keeps only one copy of
your stored archive file. For files of special importance (only), use HTAR's -Y dualcopy
option to force creation of a duplicate (invisible) backup copy. Use -K to verify your
archived results.

Index File (name.tar.idx)

To allow archives of unlimited size and to support the direct extraction of any stored
archive member(s) without retrieving the whole archive to local disk, HTAR automatically
builds an external index file to accompany every archive that you create. While making
the archive, HTAR temporarily writes the index file to the local /tmp file system on the
machine where it runs, then transfers it (by default) to the same storage (or other remote)
directory where the archive itself resides at the end of the process.

Each HTAR index file contains one 512-byte record for every member file, directory entry,
or symbolic link stored in the corresponding archive file, regardless of the member file's
size (so even a 10,000-file archive will have an index file of only about 5 Mbyte). HTAR
index files are so much smaller than the archives that they support that the index file often
remains on HPSS disk (to rapidly respond to queries) even when the larger archive file
itself migrates to storage tape (cartridges). If you use HTAR's -E or -F options to force the
archive to a location other than storage, the index file is written to the same location as the
archive file.

HTAR Reference Manual - 7

Consistency File (/usr/tmp/HTAR_CF_CHK_nnnnn_mmmmmmmmm)

Because the archive and index files are separate, HTAR maintains a consistency check
between them in an additional 1-block (256-byte) file always parked (as a last step) at the
end of each archive. This consistency file's name has the long numerical format shown
above, but it begins with /var/tmp/uname on a Linux/CHAOS cluster and /tmp if generated
on a Sun. HTAR never extracts this file (unless you specifically request it), but every use
of -t and -v (together with -c or -x) reports this perhaps unexpected consistency file at
the end of HTAR's list of archived contents. (Verification option -K neither reports this
consistency file nor counts it, unlike table-of-contents option -t.)

HTAR Reference Manual - 8

TAR and HTAR Compared

TAR was originally intended to write a specified set of files to offline tape (or retreive them), and hence
by extension, to simply write (or retrieve) a specified set of files to a local envelope or library file for easier
management. HTAR in many ways returns TAR to its roots because it is specifically designed to efficiently
store a set of files together in HPSS or get them back, not merely to make an archive file and leave it, although
you can force HTAR to do that.

This table compares the more familiar TAR features and effects with those (often enhanced) of HTAR:

Feature TAR HTAR
Can create an archive file without
storing it?

Yes (the default) With -E or -F

Can create an archive file without
using local disk space?

No Yes (the default)

Can store an archive file while
creating it?

No, needs FTP Yes (the default)

Can store an archive file without
creating it?

No No

Can write an archive to (offline)
tape?

Yes No (to storage
disk)

Can write an archive to another
machine?

No Yes, with -F

Can read an archive from another
machine?

No Yes, with -F

Can read any TAR archive file? Yes (the default) Yes, if -X first
Can read any HTAR archive file? Yes Yes (the default)
Can extract just one file from a
stored archive?

No Yes (the default)

Can add file(s) to an existing
archive?

Yes No

Default target if no archive
specified?

Yes (tape) No, -f required

Treats input directories
recursively?

Yes Yes

Option -L disables directory
recursion?

Yes (under AIX
but not Linux)

No

Preserves original permissions on
files?

No (uses UMASK) Yes, with -p

Depends on HPSS availability to
work?

No Yes

HTAR Reference Manual - 9

Feature TAR HTAR
Archive duplicated automatically in
storage?

No Only with -Y
dualcopy

Builds and needs an external index
file?

No Yes

Builds and needs a consistency
check file?

No Yes

Overwrites existing files without
warning?

Yes Yes (-w disables)

Can use standard input or output? Yes (with -f -) Yes (with -L, -O)
Order of options important? Somewhat Somewhat
Table of contents (-t) reveals what? File names only File names and

properties
Can create and verify CRC
checksums of member files?

No Yes

Can verify contents of a newly
created archive as part of creation
operation?

No Yes

HTAR Reference Manual - 10

How to Use HTAR

HTAR Execute Line

To run HTAR you must log on to an LC production machine where HTAR has been installed at a time when
the storage system (HPSS) is up and available to users. The HTAR execute line has the general form

htar action archive [options] [filelist]

and the specific form

htar -c|t|x|D|K|U|X -f archivename [-BdEFhHILmMoOpPSTvVwY] [flist]

where exactly one action and the archivename are always required, while the control options and (except
when using -c) the filelist (or flist) can be omitted (and the options can share a hyphen flag with the action for
convenience). Here,

-c (create) opens a connection to storage, creates an archive file at the storage location (your
home directory by default, not online) and with the name specified by -f, and transfers
(copies) into the archive each file specified by filelist (required whenever you use -c). If
archivename already exists, HTAR overwrites it without warning. To create a local archive
file instead (the way TAR does), also use -E; to deposit it on a nonstorage host, also
use -F. If filelist specifies any directories, HTAR includes them and all of their children
recursively. Use -P with -c to automatically create all needed subdirectories along the
archive pathname.

-t (table of contents) opens a connection to storage, then lists (in the order that they were
stored) the files currently within the stored archive file specified by -f, along with their
owner, size, permissions, and modification date (the list includes HTAR's own consistency
file (page 6)). Here filelist defaults to * (all files in the archive), but you can specify a more
restrictive subset (usually by making filelist a filter). Compare with -K output below.

-x (extract) opens a connection to storage, (or to another remote host specified by -F), then
transfers (extracts, copies) from the stored (remote) archive file specified by -f each
internal file specified by filelist (or all files in the archive if you omit filelist). If filelist
specifies any directories, HTAR extracts them and all their children recursively. If any file
already exists locally, HTAR overwrites it without warning, and it creates all new files
with the same owner and group IDs (and if you use -p, with the same UNIX permissions)
as they had when stored in the archive. (If you lack needed permissions, extracted files
get your own user and group IDs and the local UMASK permissions; if you lack write
permission then -x creates no files at all.) Note that -x works directly on the remote archive
file; you never retrieve the whole archive from storage just to extract a few specified files
from within it (impossible with TAR).

HTAR Reference Manual - 11

-D (soft delete) opens a connection to storage, then reads the existing index file, creating
a new temporary index file in the local file system and marking each of the specified
member files as deleted in the new index file. It then replaces the existing index file with
the new temporary copy.

-K (verify) opens a connection to storage (or to another remote host specified by -F),
verifies the index file for the archive that you specify with -f, then uses the index file to
verify every entry in (member of) the archive file itself. The default responses from -K
appear very quickly and overwrite, so you may only be able to read the last one ("HTAR
successful," if it is). If the index file is missing for an archive, -K reports the error message
"no such file archivename.idx." If you combine -K with -v (verbose output), HTAR lists
the name of each file (that it successfully finds) in the specified archive in alphabetical
order, one per line, along with the size of each in bytes and in blocks (excluding the
consistency file (page 6)), then gives a total file count. Compare this output with that from
-t (above). Note that on Linux (CHAOS) systems at LC, the -K option for standard TAR
has an entirely different function than -K has for HTAR (equivalent to --starting-file, it
specifies a start file during TAR extractions).

-U (undelete) opens a connection to storage, then reads the existing index file, creating a new
temporary index file in the local file system and unsetting the deleted flag for the specified
member files in the new index file. It then replaces the existing index file with the new
temporary copy.

-X (index) opens a connection to storage (or to another remote host specified by -F), then
creates an (external) index file for the existing archive file specified by -f (a stored TAR-
format file by default, a local TAR-format file if you also use -E, or remote if you use -
F). Using -X rescues an HTAR archive whose (stored) index file was lost, and it enables
HTAR to manage an archive originally created by traditional TAR. The resulting external
index file is stored if the corresponding archive is stored, but local if the archive is local
(with -E). See the "How HTAR Works (page 6)" section for an explanation of HTAR
index files.

-f archivename (required option) specifies the archive file on which HTAR performs the -c|t|x|X|K actions
described above. HTAR has no default for -f (whose argument must appear immediately
after the option name). Because HTAR (normally) operates on stored archive files,
archivename also locates the archive file relative to your storage (HPSS, not online) home
directory: a simple file name here (e.g., abc.tar) resides in your storage home directory,
while a relative pathname (e.g., xyz/abc.tar) specifies a subdirectory of your storage home
directory (i.e., /users/unn/username/xyz/abc.tar), the recommended practice for batch jobs.
Never use tilde (~) in archivename because the shell expands it into your online, not your
storage, home directory. HTAR's -f makes no subdirectories; you must have created them
in advance (with FTP's or HSI's mkdir option) before you mention them in archivename.
When used with -F to make or read an archive on a nonstorage machine, archivename
should be the full pathname of the archive on the remote machine (e.g., /var/tmp/abc.tar).

HTAR Reference Manual - 12

filelist specifies the input files for -c and the subset of archived files to process (for -t, -x, or -X).
Omitting filelist for -c yields a null result and the error message "refusing to create empty
archive." Omitting filelist for -t, -x, -X, or -K defaults to *, all files within the archive file
specified by -f. Here filelist can include a blank-delimited list of files, UNIX file filters
(metacharacters), or directory name(s) to be processed recursively.

HTAR Reference Manual - 13

SYNTAX ISSUES:
Traditional TAR is such an old utility (whose original use, writing bundled files to local tape drives, is seldom
needed now) that syntax differences have evolved under different versions of the UNIX operating system. AIX
and Linux (CHAOS at LC), for example, offer some different TAR options and use some of the same options
(such as -L) for different purposes.

An itemized comparison of TAR and HTAR features appears in an earlier section (page 8) of this manual.
Generally, HTAR syntax follows the more restrictive implementations of TAR. Thus with HTAR:
(1) one "action" -c|t|x|X|K is always required, but it need not come first on the HTAR execute line. However, if
the first option on the command line starts without a minus sign but is an HTAR action character, it is treated as
if the option did start with a minus sign. For example, the following two command lines are equivalent:

htar -c -v -f abc.tar *

htar cv -f abc.tar *
(2) the archive specifier -f is always required and it must immediately precede its argument (-f archivename),
regardless of where that pair falls on the HTAR execute line,
(3) any HTAR flag character that requires an argument, such as -L pathname, requires that the argument
immediately follow the option character, with or without preceding whitespace,
(4) all HTAR options, whatever their order, must precede the first member file name (all options must precede
flist or any filters that take the place of flist)
(5) options may share the flag character (-) as long as the other rules above are also followed.

Thus these three combinations

htar -c -v -f abc.tar *

htar -cvf abc.tar *

htar -v -f abc.tar -c *

are all equivalent, acceptable HTAR execute lines.

DEFAULTS:

• Directories.
By default, HTAR creates an archive by copying files from the online directory where you run it into
a file in your storage (HPSS) home directory, and it extracts files by reversing that process. You must
always specify the name of the archive file on which HTAR operates (there is never a default archive). In
its reports, HTAR appends slash (/) to each directory name listed.

• File Names.
Once you name the archive, HTAR calls the corresponding external index file archivename.idx by default
and stores it in the same HPSS directory as the archive (by default). HTAR's -I option lets you specify an
nondefault name or location for the index file. The HTAR consistency file's name begins with /usr/tmp/
HTAR on IBM machines and /tmp/HTAR on Sun machines (a default that you cannot change). On Linux/
CHAOS machines, the consistency file's name begins with /var/tmp/uname/HTAR, where uname is your
login name on the machine where you run HTAR.

HTAR Reference Manual - 14

• Class of Service (COS).
By default, HTAR stores a single copy of each archive in HPSS, regardless of its size. But you can
request dual-copy storage of any mission critical HTAR archive, regardless of its size, by using the -Y
dualcopy option on HTAR's execute line. NFT's command DIR used with the -h option reports the COS
for stored files (in output column 3).

HTAR Reference Manual - 15

HTAR Error Conditions
Following LLNL practice, HTAR prefixes all ordinary messages with the string 'HTAR:', but it prefixes

nonfatal errors with 'INFO:' and fatal errors with 'ERROR:'. Unexpected situations are usually flagged with a
'###WARNING' prefix.

The most common error conditions and HTAR's (often cryptic) responses to them are summarized here to
help you troubleshoot:

Storage (HPSS) is down.

When HPSS is unavailable to users (perhaps for maintenance), no stored archive can be
read or written. HTAR returns a message of this form and ends (there is no persistence as
with NFT):

hpssex_OpenConnection: unable to obtain remote site info
result = -5000, errno = 0
Unable to setup communication to HPSS. Exiting...

Specified archive directory does not exist.

If -f specifies a child directory (of your storage home directory) that you have not
previously created (with FTP's or HSI's mkdir option), HTAR returns an error message
that often only hints at the actual problem. When you attempt to create an archive in a
nonexistent (sub)directory, HTAR responds:

***Error -2 on hpss_Open (create) for archivename

When you attempt to extract files from an archive in a nonexistent (sub)directory, HTAR
at least replaces the first line of this error message with:

***Fatal error opening index file archivename.idx

Specified archive file does not exist.

If -f specifies an archive file that does not exist (perhaps because you deleted it or
mistyped its name), HTAR responds:

[FATAL] no such HPSS archive file: archivename

Specified index file does not exist.

If you try to list (-t) or extract (-x) files from an actual HTAR archive whose corresponding
external index file (archivename.idx) has been deleted or moved, HTAR pinpoints the
problem only by reporting the missing index name:

No such file: archivename.idx

You can work around the missing index by using HTAR's -X (uppercase eks) option to
rebuild the index while the archive remains stored, or you can retrieve the whole archive
from storage with FTP or HSI and then open it with TAR.

HTAR Reference Manual - 16

HTAR's filelist omitted.

If you try to create (-c) an archive without specifying a filelist (or without using a filelist
replacement such as -L), HTAR connects to HPSS but quickly ends with the message

Refusing to create empty archive.

If you try to list (-t) or extract (-x) without specifying a filelist, HTAR defaults to
processing all files in the archive.

HTAR run with no options.

Because HTAR requires exactly one action (-c|t|x|X|K) and a specified archive file (-f)
to run, executing the program with nothing else on the execute line yields a terse syntax
summary. There is no prompt for input, and HTAR terminates.

Command line too long for shell.

The easy way to build an HTAR archive of very many like-named files is to specify them
indirectly by using a UNIX metacharacter (filter, wild card) such as * (to match any string)
or ? (to match any single character). But if the selected file set has thousands of members,
the list of input names that the UNIX shell generates by expanding such an "ambiguous
file reference" may grow too long to handle. See the Limitations and Restrictions (page
17) section below for several ways to work around such excessively long command
lines when building large archives with HTAR.

Wild cards (metacharacters) used for retrieval.

HTAR allows * only to create an archive, not to retrieve files from one ("no match" is the
usual, but not the only possible, error message). See the Retrieving Files (page 35)
section below for an analysis and possible ways to work around this limitation.

HTAR Reference Manual - 17

HTAR Limitations and Restrictions

The current version of HTAR has the following known limitations or usage restrictions:

• I/O:
You can redirect any HTAR output into a file (with >) for separate postprocessing (see the Retrieving
Files (page 35) section for one helpful application of this). But HTAR normally does not read from
or write to UNIX pipes (standard input, standard output). Two HTAR control options, however, let you
enable the use of pipes if you need them:

◊ Read From Standard Input.
Use HTAR's -L inputfile option with a hyphen (-) as the inputfile (that is, -L -) to read a list of files
from a UNIX pipe (from standard input) instead of from the usual execute-line filelist. The "Too
Many Names" discussion later in this section shows how to apply this technique to solve a practical
problem when creating archives with very many input files.

◊ Write To Standard Output.
Use HTAR's -O (uppercase oh) option to write a file extracted with the -x option to standard output
(and hence to a UNIX pipe if you wish). Thus

htar -xf abc.tar -O def

extracts file DEF from archive ABC.TAR in your storage home directory and displays it at your
terminal, while

htar -xf abc.tar -O def | wc

instead reports DEF's line, word, and character count. Because HTAR does not separate files in the
output stream, this usually is useful only when extracting a single file.

• METACHARACTERS:
HTAR leaves all processing of metacharacters (filters or wild cards, such as *) to the shell. This means
that when you create an HTAR archive you can use * to select from among your local files to store, but
when you retrieve specific files from within an already stored archive you CANNOT use * to select from
among the stored files to get back. See the Retrieving Files (page 35) example below for details on
this limitation, and a few suggested but inelegant ways to work around it. Another side effect of this
approach to metacharacters is that C shell (csh) users must type the three-character string -\? (instead of
-?) to display HTAR's help message.

• UPDATES:
No options exist to update (replace), remove (delete), or append to individual files that HTAR has already
archived. You must replace (create again) an entire archive to alter the member files within it.

• NAME LENGTH:
To comply with POSIX 1003.1 standards regarding TAR-file input names, the longest input file name
of the form prefix/name that HTAR can accept has 154 characters in the prefix and 99 characters in the
name. Link names likewise cannot exceed 99 characters.

HTAR Reference Manual - 18

• FILE SIZE:
The maximum size of a single member file within an HTAR archive is 68 Gbyte (expanded from the
former 8-Gbyte limit once imposed by the format of the TAR header). HTAR imposes no limit on the
maximum size of an archive file (some have successfully reached 10 Tbyte), but local disk space (when
using -E or -F) or storage space might externally limit an archive's size. Users can specify a maximum
number of member files per archive with HTAR's -M option.

• PASSWORDLESS FTP:
Because HTAR (unlike FTP) does not support user dialog with a server and has no password-passing
option, you can only manipulate HTAR archives on machines with preauthenticated (passwordless) FTP
servers. This limits the use of HTAR's -F option to LC production machines only because there is no way
to satisfy the password request from other FTP servers. HTAR does not run the PFTP client.

TOO MANY NAMES.
For users who make HTAR archives containing thousands of files, a different kind of limitation poses
problems, a limitation of the UNIX shell (csh, bsh, ksh) rather than of the HTAR program itself. One would
normally select multiple files for archiving by using a UNIX "ambiguous file reference," a partial file name
adjacent to one or more shell metacharacters (or "wild card" filters, such as the asterisk(*)). Your current shell
automatically expands the metacharacter(s) to generate a (long) alphabetical list of matching file names, which
it inserts into the execute line as if you had typed them all yourself. Thus

htar -cf test.tar a*

might become equivalent to a command line with dozens of a-named files on the end. Each shell has a
maximum length for execute lines, however, and if your specified metacharacter filter matches thousands of
file names, HTAR's execute line may grow too long for the shell to accept. This would prevent building your
intended many-file archive.

WORK-AROUND 1: USE A DIRECTORY.
The most effective, least resource-intensive way to work around the problem of having a (virtual) HTAR
execute line too long for the shell to handle is to plan ahead and keep (or generate) in a single directory all
and only the files that you want to archive. HTAR processes directory names recursively by default. So, if you
specify only the relevant directory name on HTAR's execute line, HTAR will (internally) archive every file
within the directory without any filter-induced length problems. For example,

htar -cf test.tar projdir

will successfully archive any number of files within the PROJDIR directory yet use no troublesome shell-
mediated file-name generation to do it.

WORK-AROUND 2: USE FIND.
The UNIX FIND utility is designed to produce lists of files (that meet specified criteria) to feed into other
programs for further processing, so FIND offers a second way for HTAR to archive very large numbers of
files without having a very long execute line. Indirection is required for success, however. The "natural" use of
FIND's -EXEC option to run another program (here, HTAR) driven by a list of files from FIND, for example,

[WRONG]
find . -name 'a*' -print -exec htar -cf test.tar {} \;

HTAR Reference Manual - 19

fails to produce the desired effect. This actually runs HTAR once (to build an archive called test.tar) for each
successive input file (here, files beginning with A). If there are thousands of files, HTAR just repeatedly creates
a one-file archive thousands of times (each replacing the previous archive) so that only the last file processed
really remains in test.tar at the end.

Instead, enable FIND to pipe standard input directly into HTAR by invoking HTAR's -L option with a
hyphen (-) argument instead of a file name. The correct sequence is:

find . -name 'a*' -print | htar -cf test.tar -L -

(The use of the metacharacter * in FIND's execute line here does not pose the same too-long problem as it
did originally in HTAR's execute line because the surrounding quotes shelter the filter from shell processing.
FIND's -NAME option generates the list of matching names internally, without expanding FIND's execute line.)
If you need to keep the list of input names (for verification or audit purposes, for example), you could break this
single line into two equivalent steps mediated by a helper file (here called ALIST) that you preserve:

 find . -name 'a*' -print > alist
 htar -cf test.tar -L alist

HTAR Reference Manual - 20

HTAR Environment Variables

HTAR uses the following HPSS-related environment variables if they are available on the machine where it
runs:

HPSS_HOSTNAME

specifies the host name or IP address of the network interface to which HPSS mover(s)
should connect when transferring data at HTAR's request (overridden by the information
specified in the file /usr/local/etc/HPSS.conf). The default interface (the alternative to
HPSS_HOSTNAME) is often slow, such as the control Ethernet of an IBM SP machine.

HPSS_PATH_ETC

specifies the pathname of a local directory containing the HPSS network options file.

HPSS_SERVER_HOST

specifies the server host name and optional port number of the HTAR server.

HTAR_COS specifies the default class of service (COS) ID for the archive file that HTAR creates, or
contains the string AUTO to force HPSS to automatically select the class of service based
on the file size. HTAR option -Y overrides HTAR_COS (see the end of the next section
(page 25) for details).

TMPDIR specifies the directory to use when HTAR creates temporary files, such as the index file or
the consistency file.

HTAR Reference Manual - 21

Executing HTAR Using Hopper

Hopper is a graphical front end for several file-transfer tools (FTP, NFT, HTAR) that is installed on all LC
production machines, open and secure. With Hopper you can create HTAR archives by graphically dragging
files and directories to the Hopper storage window, and you can just as easily extract contents of HTAR
archives. For more details on Hopper, type "man hopper" on an LC host, use Hopper's built-in help package, or
visit the Hopper Web pages at https://computing.llnl.gov/resources/hopper/ (URL: https://computing.llnl.gov/
resources/hopper/).

https://computing.llnl.gov/resources/hopper/

HTAR Reference Manual - 22

HTAR Options

Action Options

Exactly ONE of these action options is required every time that you run HTAR.

-c (create) opens a connection to storage (in parallel, but not using PFTP), creates an archive
file at the storage location (not online) and with the name specified by -f, and transfers
(copies) into the archive each file specified by filelist (required whenever you use -c). If
archivename already exists, HTAR overwrites it without warning. To create a local archive
file instead (the way TAR does), also use -E; to deposit it on a nonstorage host, also
use -F. If filelist specifies any directories, HTAR includes them and all of their children
recursively. Use -P with -c to automatically create all needed subdirectories along the
archive pathname.

-D (delete) soft-deletes the specified member files from the archive by marking them as
deleted in the index file. When the archive file is repacked (planned for a future release),
deleted files will not be included in the repacked archive.

-K (verify) opens a connection to storage (or to another remote host specified by -F),
verifies the index file for the archive that you specify with -f, then uses the index file to
verify every entry in (member of) the archive file itself. The default responses from -K
appear very quickly and overwrite, so you may only be able to read the last one ("HTAR
successful," if it is). If the index file is missing for an archive, -K reports the error message
"no such file archivename.idx." If you combine -K with -v (verbose output), HTAR lists
the name of each file (that it successfully finds) in the specified archive in alphabetical
order, one per line, along with the size of each in bytes and in blocks (excluding the
consistency file (page 6)), then gives a total file count. Compare this output with that from
-t (above). Note that on Linux (CHAOS) systems at LC, the -K option for standard TAR
has an entirely different function than -K has for HTAR (equivalent to --starting-file, it
specifies a start file during TAR extractions).

-t (table of contents) opens a connection to storage (in parallel, but not using PFTP), then
lists (in the order that they were stored) the files currently within the stored archive file
specified by -f, along with their owner, size, permissions, and modification date (the list
includes HTAR's own consistency file (page 6)). Here filelist defaults to * (all files in the
archive), but you can specify a more restrictive subset (usually by making filelist a filter).

-U (undelete) undeletes the specified member files from the archive that were previously soft-
deleted by -D by removing the deleted flag in their index file entires.

HTAR Reference Manual - 23

-x (extract) opens a connection to storage (or to another remote host specified by -F), then
transfers (extracts, copies) from the stored (remote) archive file specified by -f each
internal file specified by filelist (or all files in the archive if you omit filelist). If filelist
specifies any directories, HTAR extracts them and all their children recursively. If any file
already exists locally, HTAR overwrites it without warning, and it creates all new files
with the same owner and group IDs (and if you use -p, with the same UNIX permissions)
as they had when stored in the archive. (If you lack needed permissions, extracted files
get your own user and group IDs and the local UMASK permissions; if you lack write
permission then -x creates no files at all.) Note that -x works directly on the remote archive
file; you never retrieve the whole archive from storage just to extract a few specified files
from within it (impossible with TAR).

-X (index) opens a connection to storage (or to another remote host specified by -F), then
creates an (external) index file for the existing archive file specified by -f (a stored TAR-
format file by default, a local TAR-format file if you also use -E, or remote non-storage
machine if you use -F). Using -X rescues an HTAR archive whose (stored) index file was
lost, and it enables HTAR to manage an archive originally created by traditional TAR. The
resulting external index file is stored if the corresponding archive is stored, but local if the
archive is local (with -E). See the "How HTAR Works (page 6)" section for an explanation
of HTAR index files.

HTAR Reference Manual - 24

Archive Option

This option is required every time that you run HTAR unless you only use the -? option.

-f archivename

(required option) specifies the archive file on which HTAR performs the -c|t|x|X|K actions
described above. HTAR has no default for -f (whose argument must appear immediately
after the option name). Because HTAR (normally) operates on stored archive files,
archivename also locates the archive file relative to your storage (HPSS, not online) home
directory: a simple file name here (e.g., abc.tar) resides in your storage home directory,
while a relative pathname (e.g., xyz/abc.tar) specifies a subdirectory of your storage home
directory (i.e., /users/unn/username/xyz/abc.tar). Never use tilde (~) in archivename
because the shell expands it into your online, not your storage, home directory. HTAR's
-f makes no subdirectories; you must have created them in advance (with FTP's or HSI's
mkdir option) before you mention them in archivename. When used with -F to make or
read an archive on a nonstorage machine, archivename should be the full pathname of the
archive on the remote machine (e.g., /var/tmp/abc.tar).

HTAR Reference Manual - 25

Control Options

These options change how HTAR behaves, but none is required (default values are indicated when they
exist).

-? displays a short help message (a syntax summary of the HTAR execute line and a one-line
description of each option). Users running HTAR under the C shell (CSH) will probably
have to use the three-character string -\? to display this help message.

-B adds block numbers to the listing (-t) output (normally used only for debugging).

-d debuglevel (default is 0) sets to an integer from 0 through 5 the level of debug output from HTAR,
where 0 disables debug information for normal use and 1 to 5 enable progressively more
elaborate debug output.

-E emulates TAR by forcing the archive file to reside on the local machine (where you run
HTAR) rather than in HPSS (storage), where it resides by default (-f always specifies the
archive pathname, which -E interprets as local rather than remote). See also -F for making
nonstorage remote archives. The HTAR index file goes into the same (local) directory as
the archive. Option -P works with -E.

-F [user@]host[#port]

overrides the HTAR default of a stored archive and specifies on which remote machine
(host) the archive resides other than in HPSS. For creating archives, host is the sink
machine; for extracting files from existing archives, host is the source machine (see the
between-machine example (page 44) for how to use -F properly). See also -E for
making nonstorage local archives. The HTAR index file goes into the same (remote)
directory as the archive. Any LC production machine with preauthenticated (passwordless)
FTP service can be the -F host. HTAR still contacts the HPSS server even though the
archive does not reside in HPSS, just to log all -F transactions. The user and port fields are
seldom needed or appropriate because they usually betray the need for an FTP password
and HTAR has no means to transmit one (the default user is you, the default port is 21).
WARNINGS: Using -F to specify "storage" as the archive host is not only completely
unnecessary, because it is HTAR's default, but also inefficient, because it undermines
HTAR's built-in techniques for moving files to or from stored archives quickly and
effectively. Also, -P does not work with -F.

-h (used only with -c; has no effect otherwise) for each symbolic link that it encounters,
causes HTAR to replace the link with the actual contents of the linked-to file (stored under
the link name, not under the file's original name). Later use of -t or -x treats the linked-to
file as if it had always been present as an actual file with the link name. Without -h, HTAR
records, reports, and restores every symbolic link overtly, but it does not replace the link
with the linked-to contents.

HTAR Reference Manual - 26

-H subopt[:subopt...]

specifies a colon-delimited list of HTAR suboptions to control program execution.
Possible subopt values include:

acct=id/acctname

specifies the numeric account ID or alphabetic account name to use
for the current HTAR run. This option is only meaningful for HPSS-
resident archives.

cix used with the extract (-x) operation with HPSS-resident archives. If
specified, precopies the index file to a temporary local file before reading
the archive file. This option is normally not needed, but was added to
avoid problems that were encountered with multithreaded I/O on some
hardware platforms.

crc enables generation of Cyclic Redundancy Checksums (CRCs) when
copying member files into the archive and when verifying the contents
of the archive (-K command line option, or -Hverify option for creates).
Enabling checksums usually degrades HTAR's I/O performance and
increases its CPU utilization.

exfile=path specifies a path name to an "exceptions" file, which contains a list of
failed member files and an explanation of the failure. Note: This option is
currently implemented only for the GPFS/HPSS Interface (GHI).

family=id[,index_id]

specifies tape file family ID to use when creating HPSS-resident
archive files, and, optionally, the family ID to use when creating the
index file. This option is useful at sites which make use of the HPSS
"file family" capability. Family ID 0, which is the default, uses the
default pool of tapes. Contact your HPSS administrator to determine
the file families that are available at your site.

nocfchk causes HTAR to disable the verification of the index file and the
consistency file. Use of this option can avoid extra tape mounts if the
consistency file lives on a different tape cartridge than the specified
member file(s). Currently, this option is only effective for the -D (soft-
delete) action.

nocrc (the default) disables generation of CRCs when creating files and when
extracting files from or verifying existing archive files.

nostage avoids prestaging tape-resident (stored) archive files when HTAR
performs -x or -X actions.

HTAR Reference Manual - 27

okfile=path specifies path to a file to contain a list of successfully transferred files.
Note: this option is currently implemented only for the GPFS/HPSS
Interface (GHI).

port=x specifies the TCP port number to use when HTAR connects to the remote
HPSS server. This parameter is only used in conjunction with the -
Hserver parameter.

relpaths used with the verify (-K) action. When comparing member files in the
archive file with local files, forces relative local file paths to be used
by removing any leading "/" from the member file path name before
attempting to read it in the local file system.

rmlocal removes local member files after HTAR has successfully written both the
archive file and the index file (used with -c).

server=host specifies the hostname or TCP/IP address of the HPSS server. The HPSS
administrator defines the default server host or IP address when HTAR is
built. The -Hport parameter (see above) can be used in conjunction with
this option to completely specify the connection address to be used.

tss=stack_size specifies the thread stack size to be used when HTAR creates threads to
read local files during a create (-c) operation. In most cases, the system
default value can be used, but situations such as the case where the
default thread stack size is set very large, for example, on machines that
are tuned for compute-type problems, can cause HTAR thread creations
to fail. stack_size can be specified in bytes, kilobytes, or megabytes by
appending a case-insensitive suffix (k, kb, m, or mb).

umask=octal_mask

used with the -c option. This specifies the HPSS umask value to be
set during HTAR startup. This impacts the permissions that are set on
the resulting archive and index files that HTAR creates in the same
manner as the Unix umask command.

verify=option[,option,..]

specifies one or more verification options that should be performed
following successful creation of the archive (-c), or for the verify (-
K) command. Multiple options can be specified by separating them
with a comma, with no whitespace. Options are processed from left to
right, and, in the case of conflicting options, the last one encountered
is used without comment. The options can be either individual items
or the keyword "all" or a numeric value of 0, 1, or 2. Each numeric
level includes all of the checks for lower-valued levels and adds
additional checks. The verifications options are:

HTAR Reference Manual - 28

all

enables all possible verification options except
paranoid.

info

reads and verifies the tar-format headers that
precede each member file in the archive.

crc|noncrc

enables or disables recalculation of the cyclic
redundancy checksum (CRC) and verification
that it matches the value that is stored in the
index file. Note that this option only applies if
the -Hcrc option was specified, which causes a
CRC to be generated for each member file as it is
copied into the archive file.

compare|nocompare

enables or disables byte-by-byte comparison of
the local member files with the corresponding
archive files. If -Hrelpaths is not specified, then
absolute paths for member files in the archive
will also be treated as absolute local paths.

paranoid|noparanoid

enables or disables (the default) extreme
efforts to detect problems (such as discovering
whether local files were modified during archive
creation before deleting them if authorized by
RMLOCAL).

0|1|2

0 enables the "info" verification. 1 enables level
0 and "crc" (i.e., info,crc). 2 enables level 1 and
"compare" (i.e., info,crc,compare). It is also
possible to specify a verification option such as
"all" or a numeric level such as 0, 1, or 2, and
then selectively disable one or more options.

-I indexname

specifies a nondefault name for the HTAR external index file that supports the archive
specified by -f.
WARNING: if you use -I to make any nondefault index name (3 cases, below) when you
create (-c) an archive, then you MUST also use -I with the same argument every time you

HTAR Reference Manual - 29

extract (-x) files from that archive (else HTAR will look for the default index, not find it,
and end with an error).
There are three cases based on the first character of indexname:

. (dot) If indexname begins with a period (dot), HTAR treats it as a suffix to
append to the current archive name.
Example: -I .xnd yields an index file called archivename.xnd

/ If indexname begins with a / (slash), HTAR treats it as an absolute path
name (you must create all the subdirectories ahead of time with FTP's or
HSI's mkdir option).
Example: -I /users/unn/yourname/projects/text.idx uses that absolute path
name in storage (HPSS) or the local file system (-E) or remote file system
(-F) for the index file.

other If indexname begins with any other character, HTAR treats it as a relative
pathname (relative to the storage directory where the archive file resides,
which might be different than your storage home directory).
Example: -I projects/first.index locates first.index at storagehome/
projects/first.index if the archive file is in your storagehome (the
default), but tries to locate first.index at storagehome/projects/projects/
first.index if the archive was specified as -f projects/aname in the
first place. (All such subdirectories must be created in advance or
the -P command line option must be specified to create any missing
intermediate subdirectories.)

-L inputfile (used with -c) writes the files and directories specified by their literal names (in the
inputfile, which contains file names one per line) into the archive specified by -f.
Directories are treated recursively; a directory entry and its subdirectories or subfiles are
all written to the archive. Normal metacharacters (tilde, asterisk, question mark) are treated
literally, not expanded as filters. Replace inputfile with a hyphen (-L -) for HTAR to read
the list of file names from standard input; the HTAR "Limitations" section (page 17) shows
how to use this technique.
(used with -x) retrieves the files and directories specified by their literal names. See the
Retrieving Files (page 35) example below for how to use -L instead of wild cards to
retrieve only specified files from a stored archive.
WARNING: HTAR's -L differs from both AIX TAR's -L (which handles directories
nonrecursively) and Linux TAR's -L (which changes tapes).

-m (used only with -x; applies only to files) makes the time of extraction the last-modified
time for each member file (the default preserves each file's original time of last
modification). For directories, HTAR itself always preserves the original modification time
for top-level directories that it copies from an archive, even if you invoke -m. However,
subsequently creating subdirectories or files within a directory may cause the operating
system to change the modification time on one or more directories (so that it too appears to
be the time of extraction).

HTAR Reference Manual - 30

-M maxfiles (default is 10,000,000 at LLNL) specifies the maximum number of member files allowed
when you use -c to create an HTAR archive. Internal limits are set when HTAR is
compiled at each site; at LLNL, you can increase maxfiles as high as 50,000,000.

-n timeinterval (used only with -c; has no effect otherwise) includes in a new archive only those files
(that meet your other naming criteria and) that were either created or modified between
now and the start of timeinterval. Option -n is intended mostly to simplify the creation of
incremental backup archives. Here timeinterval can have the form:

d an integer that specifies days (e.g., 5 for 5 days), or

:h an integer that specifies hours (e.g., :12 for :12 hours), or

d:h a pair of integers that specify days and then hours (e.g., 1:6 for 1 day and
6 hours).

-o (lowercase, used only with -x) (default for all nonroot users) causes the extracted files to
take on the user and group ID (UID, GID) of the person running HTAR, not those of the
original archive. This makes a difference for root users but not for ordinary HTAR users.

-O (uppercase, used only with -x, mimics the Linux TAR --to-stdout option) writes the file(s)
extracted from an archive (with -x) to standard output (and hence to a UNIX pipe for
postprocessing, if you wish). The HTAR "Limitations" section (page 17) above shows how
to use this technique. Because HTAR does not separate files in the output stream, -O is
usually useful only when you extract a single file.

-p preserves all UNIX permission fields (on extracted files) in their original modes, ignoring
the present UMASK (the default changes the permissions to the local UMASK where
HTAR extracts the files). Root users can also preserve the setuid, setgid, and sticky bit
permissions with this option.

-P (used only with -c, has no effect otherwise) automatically creates all intermediate
subdirectories specified on the archive file's pathname if they do not already exist. HTAR's
-P thus works the same as MKDIR's -P option. You can use -P with archives created in
HPSS (storage, the default) or on your local machine (with -E), but it fails for other remote
archives (those created with -F).

-q (quiet mode) supresses most HTAR informational messages, such as its usual interactive
progress reports as it creates an archive file.

-S bufsize (default is 16 Mbyte) specifies the buffer size to use when HTAR reads from or writes to
an HPSS archive file. Here bufsize can be a plain integer (interpreted as bytes), an integer
suffixed by k, K, kb, or KB for kilobytes, or an integer suffixed by m, M, mb, or MB for
megabytes (e.g., 16mb). -S is intended mostly for LC staff, not ordinary HTAR users.

HTAR Reference Manual - 31

-T maxthreads specifies the maximum number of threads that HTAR will use to copy member files to
or from the archive file (default varies from 5 to 20 threads). This value is ignored when
extracting member files from an archive (-x). HTAR reports the actual number of threads
used on each run if you invoke -v or -V. HTAR creates a maxthreads pool of threads and
then uses buffer size (see -S), average member file size, and HPSS network transfer rates
to estimate how many threads to actually deploy. Normally, the smaller the member file
size, the more threads can be active when creating files. For small files, setting -T to a
larger number (up to 100 has been tested) can dramatically improve the transfer rates if the
operating system is able to support the load.

-U undeletes soft-deleted member files (see -D above) by copying the existing index file to a
temporary local file, removing the deleted flag in the specified index entries along the way,
and then rewriting the temporary index to the same location (HPSS, local file system (-E)
or remote filesystem (-F)).

-V requests "slightly verbose" reporting of file-transfer progress (often very brief, overwritten
messages to the terminal). Do not use with -v.

-v requests "very verbose" reporting of file-transfer progress. For each member file
transferred to an archive, HTAR prints A (added) and its name on one line; for each
member file extracted from an archive, HTAR prints X, its name, and its size on a line,
along with a summary of the whole transfer at the end. For each file added during a build
index (-X) operation, HTAR prints i and its name. For each file verified during a verify
operation (-K), HTAR prints v (or V if comparing archive and local file contents), its
name, and a trailing / if this is a directory. For each file that is soft-deleted during a delete
(-D) operation, HTAR prints d; similarly, for an undelete (-U) operation, HTAR prints u.
Do not use with -V.

-w (works only with -x, -D, -U, not with -c) lists (one by one) each member file to be
extracted from the archive and prompts you for your choice of confirmatory action, where
possible responses are:

y[es] extracts the named file.

n[o] skips the named file.

a[ll] extracts the named file and all remaining (not yet processed) selected files
too.

q[uit] skips the named file and stops prompting. HTAR ends.

-Y auto | [archiveCOS][:indexCOS]

specifies the HPSS class of service (COS) for each stored archive and its corresponding
index file. The default is AUTO, which causes HTAR to use a site-specific COS chosen
for archive suitability (at LC, the default COS for HTAR files is 160, which automatically
stores a single copy of each archive, regardless of its size). You can specify a nondefault
COS for the archive, the index, or both (e.g., -Y 120:110), but this is usually undesirable

HTAR Reference Manual - 32

except when testing new HPSS features or devices (if your archive size grows to exceed
that allowed by a nondefault COS, HPSS will stop the transfer and HTAR will end
with an error). Use -Y dualcopy (i.e., COS 200) to request dual-copy storage of any
mission critical archive of any size for extra safety. Using -Y overrides the HTAR_COS
environment variable. NFT's DIR command with the -h option reports the COS for stored
files (in output column 3), while NFT's SETCOS command offers a different way to
specify the storage class of service.

HTAR Reference Manual - 33

HTAR Examples

Creating an HTAR Archive File

GOAL: To create an HTAR archive file in a subdirectory of your storage home directory and use a
filter to install several files within that stored archive.

STRATEGY: (1) One HTAR execute line can perform all of the desired tasks quickly and in parallel:

• The -cvf options create (c) an archive, verbosely (v) report the incoming files, and (f)
name the envelope file.

• The relative pathname case3/myproject.tar locates the archive (myproject.tar) in pre-
existing subdirectory case3 of your storage home directory (omitting case3/ leaves the
archive at the top level of your storage home directory). HTAR will not create case3 by
default, however; you must either have previously used FTP's or HSI's mkdir command
or else you must invoke -P to explicitly request creation of all needed subdirectories
along the archive pathname.

• File filter tim* selects all and only the files whose names begin with TIM (in the
directory where you run HTAR) to be stored in the archive.

(2) HTAR opens a preauthenticated connection to your storage (HPSS) home directory and
reports its housekeeping activities (very quickly, in lines that overwrite, so you may not notice
all of these status reports on your screen).
(3) HTAR creates your requested archive and uses parallel connections (but not the PFTP
client) to move your requested files directly into it. Directories are handled recursively and
directory names (if any) appear with a slash (/) appended to identify them.
(4) The last incoming file that HTAR reports is always the 256-byte consistency file by which
HTAR coordinates your archive with its external index file.
(5) HTAR summarizes the work done (time, rate, amount, thread count), then copies into
storage the index file that it made, destroys the local version, and ends.

htar -cvf case3/myproject.tar tim* ---(1)

 HTAR: Opening HPSS server connection ---(2)
 HTAR: Getting HPSS site info
 HTAR: Writing temp index file to /usr/tmp/aaamva09A

 HTAR: creating HPSS Archive file case3/myproject.tar ---(3)
 HTAR: a tim1.txt
 HTAR: a tim2.txt
 HTAR: a tim2a.txt
 HTAR: a tim3.a
 HTAR: a time.txt
 HTAR: a time2.gif

HTAR Reference Manual - 34

 HTAR: a /tmp/HTAR_CF_CHK_13805_997722535 ---(4)

 HTAR: Create complete for case3/myproject.tar. 399,360 ---(5)
 bytes written for 6 member files, max threads: 8
 Transfer time: 0.555 seconds (7.257 MB/s)

 HTAR: Copying Index File to HPSS...Creating file
 HTAR: HTAR SUCCESSFUL

HTAR Reference Manual - 35

Retrieving Files from within an Archive

GOAL: To retrieve several files from within an existing stored HTAR archive file (without retrieving
the whole archive first).

STRATEGY: HTAR does not process metacharacters (file filters such as *) itself, but leaves them for the
shell to expand and compare with file names in your local directory. Hence, you CANNOT
use * to select a subset of already archived files to retrieve. For example, "natural" execute
lines

 htar -xvf case3/myproject.tar time* [WRONG]
 htar -xvf case3/myproject.tar 'time*' [WRONG]

both FAIL to select (and hence to retrieve) any stored files from the MYPROJECTS.TAR
stored archive (each yields its own set of error messages). These lines work only accidentally,
if you happen to have files with the same name in both your local directory and your stored
archive (unlikely except when you are just testing HTAR).
WORKAROUNDS:
(1A) Type the name of each file that you want to retrieve (at the end of the HTAR execute
line).
(1B) If you have a long list of files to retrieve, or if you plan to reuse the same retrieval list
often, put the list of sought files into a file and use HTAR's -L option to invoke that list. You
can use HTAR's -t (reporting) option to help generate that retrieval list by reporting all the
files you have archived and then editing that report to include only the relevant file names to
retrieve. For instance,

 htar -tf case3/myproject.tar > hout
 grep 'time' hout | cut -c 50-80 > tlist

captures the list of all your stored files in the local file HOUT and then selects just the file
names that contain the string TIME for use with HTAR's -L option (here, in local file TLIST).
Note that HTAR automatically appends slash (/) at the end of every directory name that -t
reports.
(1C) Use HOPPER to run HTAR as a controllee, then select visually the files that you want to
retrieve.

(1) Once you have laid the groundwork above, a single HTAR execute line can retrieve your
specified files quickly and in parallel from within your stored archive:

• The -xvf options request retrieval/extraction (x), verbosely (v) report the retrieved files,
and (f) name the target archive.

HTAR Reference Manual - 36

• The relative pathname case3/myproject.tar locates the archive (myproject.tar) in pre-
existing subdirectory case3 of your storage home directory.

• The explicit file list (1A) or name-containing file (1B) selects all and only the files that
you want (here, those whose names begin with TIME, a subset of all files stored in this
archive in the previous example).

(2) HTAR opens a preauthenticated connection to your storage (HPSS) home directory and
reports its housekeeping activities (very quickly, in lines that overwrite, so you may not notice
all of these status reports on your screen).
(3) HTAR uses its external index to locate in the archive the (two) specific files that you
requested and then it transfers them by using parallel connections (but not the PFTP client) to
your local machine without retrieving the whole archive file.
(4) HTAR summarizes the work done (time, rate, amount) and then ends.

htar -xvf case3/myproject.tar time.txt time2.gif ---(1A)
 OR
htar -xvf case3/myproject.tar -L tlist ---(1B)

 HTAR: Opening HPSS server connection ---(2)
 HTAR: Reading index file
 HTAR: Opening archive file

 HTAR: Reading archive file ---(3)
 HTAR: x time.txt, 1085 bytes, 4 media blocks
 HTAR: x time2.gif, 3452 bytes, 8 media blocks

 HTAR: Extract complete for case3/myproject.tar, ---(4)
 2 files. total bytes read 116,736 in 0.070 seconds (1.669 MB/s)
 HTAR: HTAR SUCCESSFUL

HTAR Reference Manual - 37

Using CRC Checksums

GOAL: To include Cyclic Redundancy Checksums (CRCs) during a creations (-c) run.

STRATEGY: HTAR provides a command line option (-Hcrc) to cause it to generate a CRC for each member
file as it is being copied into the archive file. When this option is specified, HTAR will use
additional CPU time, and the I/O performance will noticeably decrease. The actual amount
of degradation varies from machine to machine. However, using this option is worthwhile if
you are concerned about the reliability of HPSS storage media, such as tapes, and you want to
verify that files have not changed when they are read back using HTAR's extract option (-x).
In addition, if -Hcrc is specified for a listing run (-t), HTAR will display the member file CRC
in square brackets []after the permissions field on each line. If no CRC is available for the
member file, an empty pair of brackets is displayed.
To illustrate the difference,
(1) Create an archive file without specifying -Hcrc.
(2) Display its contents (-t), but with -Hcrc specified.
(3) Re-create the archive file, this time with -Hcrc specified during the create operation.
(4) Redisplay its contents with -Hcrc specified.

htar -cvf case3/myproject.tar tim* ---(1)

 HTAR: a tim1.txt
 HTAR: a tim2.txt
 HTAR: a tim2a.txt
 HTAR: a tim3.a
 HTAR: a time.txt
 HTAR: a time2.gif
 HTAR: a /tmp/HTAR_CF_CHK_28518_1220351609
 HTAR Create complete for case3/myproject.tar. 399,360 bytes written
 for 6 member files, max threads: 8 Transfer time: 0.082 seconds
 (4.878 MB/s)
 HTAR: HTAR SUCCESSFUL

htar -Hcrc -tvf case3/myproject.tar ---(2)

 HTAR: -rw-r--r-- [] gleicher/hpss 9367 2005-02-04 09:05 tim1.txt
 HTAR: -rw------- [] gleicher/hpss 10568 2008-09-02 03:12 tim2.txt
 HTAR: -rwx------ [] gleicher/hpss 4396 2008-09-02 03:13 tim2a.txt
 HTAR: -rwx------ [] gleicher/hpss 253839 2008-09-02 03:13 tim3.a
 HTAR: -rwx------ [] gleicher/hpss 1786 2008-09-02 03:14 time.txt
 HTAR: -rw------- [] gleicher/hpss 113512 2008-09-02 03:14 time2.gif
 HTAR: -rw------- [] gleicher/gleicher 256 2008-09-02
 03:33 /tmp/HTAR_CF_CHK_28518_1220351609
 HTAR: Listing complete for case3/myproject.tar, 7 files 7 total objects
 HTAR: HTAR SUCCESSFUL

htar -Hcrc -cvf case3/myproject.tar tim* ---(3)

 HTAR: a tim1.txt
 HTAR: a tim2.txt

HTAR Reference Manual - 38

 HTAR: a tim2a.txt
 HTAR: a tim3.a
 HTAR: a time.txt
 HTAR: a time2.gif
 HTAR: a /tmp/HTAR_CF_CHK_28618_1220351078
 HTAR Create complete for case3/myproject.tar. 399,360 bytes written
 for 6 member files, max threads: 8 Transfer time: 0.066 seconds
 (6.075 MB/s)gleicher@toofast26[/home/toofast/gleicher/temp]:

htar -Hcrc -tvf case3/myproject.tar ---(4)

 HTAR: -rw-r--r-- [0xf4124da1] gleicher/hpss 9367 2005-02-04 09:05 tim1.txt
 HTAR: -rw------- [0x6a20d2c7] gleicher/hpss 10568 2008-09-02 03:12 tim2.txt
 HTAR: -rwx------ [0xaee5f5b9] gleicher/hpss 4396 2008-09-02 03:13 tim2a.txt
 HTAR: -rwx------ [0x036ebadc] gleicher/hpss 253839 2008-09-02 03:13 tim3.a
 HTAR: -rwx------ [0x7acb1840] gleicher/hpss 1786 2008-09-02 03:14 time.txt
 HTAR: -rw------- [0xcc713d8a] gleicher/hpss 113512 2008-09-02 03:14 time2.gif
 HTAR: -rw------- [0xa9bcf0db] gleicher/hpss 256 2008-09-02
 03:24 /tmp/HTAR_CF_CHK_28618_1220351078
 HTAR: Listing complete for case3/myproject.tar, 7 files 7 total objects
 HTAR: HTAR SUCCESSFUL

HTAR Reference Manual - 39

Verify Archive Contents During Creation

GOAL: To verify the contents of the archive file during the creation run.

STRATEGY: HTAR provides the -Hverify=option[,option...] command line option, which causes HTAR
to first create the archive file normally, and then to go back and check its work by performing
a series of checks on the archive file. You choose the types of checks to be performed by
specifying one or more comma-separated options. The options can be either individual items,
or the keyword all, or a numeric level between 0, 1 or 2. Each numeric level includes all of
the checks for lower-valued levels and adds additional checks. The verification options for -
Hverify are described in the Control Options (page 25) section.
In the example,
(1) An archive file is created (-c) with verification level 2, including CRC generation and
checking. The verbose option (-v) is used to cause HTAR to display information about each
file that is added during the create phase and then verified during the verification phase.
(2) The archive file is then listed (-t) using the -Hcrc option to cause HTAR to display the
CRC value for each member.

htar -cvf case3/myproject.tar -Hcrc -Hverify=2 tim* ---(1)

 HTAR: a tim1.txt
 HTAR: a tim2.txt
 HTAR: a tim2a.txt
 HTAR: a tim3.a
 HTAR: a time.txt
 HTAR: a time2.gif
 HTAR: a /tmp/HTAR_CF_CHK_28128_1220351451
 HTAR Create complete for case3/myproject.tar. 399,360 bytes written
 for 6 member files, max threads: 7 Transfer time: 0.041 seconds
 (9.857 MB/s)
 HTAR: V tim1.txt, 9367 bytes, 20 media blocks
 HTAR: V tim2.txt, 10568 bytes, 22 media blocks
 HTAR: V tim2a.txt, 4396 bytes, 10 media blocks
 HTAR: V tim3.a, 253839 bytes, 497 media blocks
 HTAR: V time.txt, 1786 bytes, 5 media blocks
 HTAR: V time2.gif, 113512 bytes, 223 media blocks
 HTAR: V /tmp/HTAR_CF_CHK_28128_1220351451, 256 bytes, 2 media blocks
 HTAR: Verify complete. 0 total errors, 7 total objects (7 Files,0 Dirs,0 Hard Links,0 symlinks)
 HTAR: HTAR SUCCESSFUL

htar -Hcrc -tvf case3/myproject.tar ---(2)

 HTAR: -rw-r--r-- [] gleicher/hpss 9367 2005-02-04 09:05 tim1.txt
 HTAR: -rw------- [] gleicher/hpss 10568 2008-09-02 03:12 tim2.txt
 HTAR: -rwx------ [] gleicher/hpss 4396 2008-09-02 03:13 tim2a.txt
 HTAR: -rwx------ [] gleicher/hpss 253839 2008-09-02 03:13 tim3.a
 HTAR: -rwx------ [] gleicher/hpss 1786 2008-09-02 03:14 time.txt
 HTAR: -rw------- [] gleicher/hpss 113512 2008-09-02 03:14 time2.gif
 HTAR: -rw------- [] gleicher/gleicher 256 2008-09-02
 03:33 /tmp/HTAR_CF_CHK_28128_1220351451

HTAR Reference Manual - 40

 HTAR: Listing complete for case3/myproject.tar, 7 files 7 total objects
 HTAR: HTAR SUCCESSFUL

HTAR Reference Manual - 41

Rebuilding a Missing Index

GOAL: To rebuild the missing index file for a stored HTAR archive file and thereby (re)enable
blocked access to the files within it (and extract some).

STRATEGY: (1) You try to retrieve all files (-xvf) from the HTAR archive myproject.tar in the case3
subdirectory of your storage home directory.
(2) But HTAR cannot find the external index file (here, called myproject.tar.idx) for this
archive, and it returns a somewhat cryptic error message, retrieves no requested files, and
ends. (File myproject.tar.idx may have been moved, renamed, or accidentally deleted from
storage.)
(3) So you execute HTAR again with the special action -X (uppercase, not lowercase, eks) to
request rebuilding the external index for the (same) disabled archive.
(4) HTAR opens a preauthenticated connection to your storage (HPSS) home directory,
locates the archive in subdirectory case3, scans (but does not retrieve) its contents, and thereby
creates a new myproject.tar.idx file (temporarily on local disk, then moved to the same storage
directory as the archive file that it supports). HTAR ends.
(5) Now you again try your original (1) file-retrieval request.
(6) HTAR opens a preauthenticated connection to your storage (HPSS) home directory and
reports its housekeeping activities (very quickly, in lines that overwrite, so you may not notice
all of these status reports on your screen).
(7) HTAR uses its (newly rebuilt) external index to locate the files within the archive and
transfers them by parallel connections to your local machine (it transfers all of them because
there is no filelist on the execute line).
(8) HTAR summarizes the work done (time, rate, amount) and then ends.

htar -xvf case3/myproject.tar ---(1)

 HTAR: Opening HPSS server connection
 HTAR: Getting HPSS site info
 ERROR: Received unexpected reply from server: 550 ---(2)
 ERROR: Error -1 getting Index File attributes...
 HTAR: HTAR FAILED
 ###WARNING htar returned non-zero exit status.
 72 = /usr/local/bin/htar.exe...

htar -Xf case3/myproject.tar ---(3)

 HTAR: Opening HPSS server connection ---(4)
 HTAR: Reading archive
 HTAR: Copying Index File to HPSS... creating file
 HTAR: HTAR SUCCESSFUL

htar -xvf case3/myproject.tar ---(5)

 HTAR: Opening HPSS server connection ---(6)

HTAR Reference Manual - 42

 HTAR: Reading index file
 HTAR: Opening archive file

 HTAR: Reading archive file ---(7)
 HTAR: x tim1.txt, 3503 bytes, 8 media blocks
 HTAR: x tim2.txt, 4310 bytes, 10 media blocks
 HTAR: x tim2a.txt, 5221 bytes, 12 media blocks
 HTAR: x tim3a., 5851 bytes, 13 media blocks
 HTAR: x time.txt, 1085 bytes, 4 media blocks
 HTAR: x time2.gif, 3452 bytes, 8 media blocks

 HTAR: Extract complete. total bytes read: ---(8)
 28,160 in 0.141 seconds (0.200 MB/s)
 HTAR: HTAR SUCCESSFUL

HTAR Reference Manual - 43

Specifying Very Many Files

GOAL: To specify a very large number of input files yet avoid an HTAR command line too long for
the shell to accept.

STRATEGY: The input-line-too-long problem is analyzed and explained in the HTAR Limitations (page
17) section above. The best solution is to keep in a separate directory all and only the intended
input files, and then specify that directory's name on HTAR's execute line (for recursive
processing). But if you failed to take that precaution, you can work around the problem of
having too many file names for the shell to accept by using the UNIX FIND utility as shown
here.
(1) Run FIND to select the files that you want (here, those whose names begin with T) in a
way that processes the file list internally, not by the shell. (The Limitations (page 17) section
above explains why FIND's -EXEC option will not finish the job here.) Then pipe (|) FIND's
output directly into HTAR to build the stored archive that you want (-cf) using the -L option
with a hyphen (-) argument to enable standard input (off by default).
(2) Without -v, HTAR shows no verification but does copy its index file to storage when the
archive is successfully stored.

find . -name 't*' -print | htar -cf test.tar -L - ---(1)

 HTAR: Opening HPSS server connection
 HTAR: creating HPSS archive file test.tar
 HTAR: Copying index file to HPSS...creating file ---(2)
 HTAR: HTAR SUCCESSFUL

HTAR Reference Manual - 44

Archiving Between Nonstorage Machines

GOAL: To put files from a directory local to one LC production machine into an HTAR archive file
that resides in a directory local to another LC production machine (not in HPSS storage as
usual).

STRATEGY: Your common home directory is already cross-mounted on every LC production machine
(and /nfs/tmp is cross-mounted on many machines), so you never need to use HTAR to
transfer home files "between machines." And if you want an HTAR archive deposited on the
same machine where HTAR runs (instead of in storage), use HTAR's -E option. You only need
to follow the steps below if you really need to transfer files from one machine's local directory
(such as /usr/tmp) to or from an archive file in another machine's local directory. Use -F to
specify the nonstorage archive host.
(WARNING: using -F to specify "storage" as the archive host is not only completely
unnecessary, because it is HTAR's default, but also inefficient, because it undermines HTAR's
built-in techniques for moving files to or from stored archives quickly and effectively.)

(1) To create (-c) an HTAR archive on another machine (instead of storage), run HTAR on
the machine and in the directory where the files to be archived reside (because HTAR makes
an archive using PUTs). For example:

 SOURCE: SINK:
 YANA ATLAS
 /var/tmp /usr/tmp
 file1...n -----create--->>> myarchive.tar
 [HTAR runs here] myarchive.tar.idx

Use -F to specify the sink machine (where the archive and its index file will go, here ATLAS),
and use -f to specify the full pathname of the archive on that sink machine. Note that HTAR
still contacts the HPSS server to log this transaction, even though the archive is not stored in
HPSS. (Afterwards, you can use -F with -K to verify the remote archive if you are concerned
about transfer reliability.)

(2) To extract (-x) file1 from an HTAR archive on another machine (instead of from
storage), run HTAR on the machine and in the directory where the files to be extracted should
arrive (because HTAR uses GETs to extract files). For example:

 SINK: SOURCE:
 YANA ATLAS
 /var/tmp /usr/tmp
 file1 <<<---extract---- myarchive.tar
 [HTAR runs here] myarchive.tar.idx

Use -F to specify the source machine (where the archive and its index file reside, here
ATLAS), and use -f to specify the full pathname of the archive on that source machine. Note
that HTAR still contacts the HPSS server to log this transaction, even though the archive is not
stored in HPSS.

HTAR Reference Manual - 45

htar -c -f /usr/tmp/myarchive.tar -F atlas * ---(1)

 HTAR: Opening FTP server connection
 HTAR: Opening HPSS server connection
 Creating FTP archive file /usr/tmp/myarchive.tar
 Pass 2: adjusting local index file entries
 Copying index file to remote host...creating file
 HTAR: HTAR SUCCESSFUL

htar -x -f /usr/tmp/myarchive.tar -F atlas file1 ---(2)

 HTAR: Opening FTP server connection
 HTAR: Opening HPSS server connection
 Reading index file
 Opening archive file
 Reading archive file
 HTAR: HTAR SUCCESSFUL

HTAR Reference Manual - 46

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor Lawrence Livermore National Security, LLC
nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or

process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to
any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or Lawrence Livermore National Security, LLC. The views and opinions of authors
expressed herein do not necessarily state or reflect those of the United States Government or Lawrence

Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

HTAR Reference Manual - 47

Keyword Index

To see an alphabetical list of keywords for this document, consult the next section (page 48).

Keyword Description
------- -----------
entire This entire document.
title The name of this document.
scope Topics covered in this document.
availability Where HTAR runs.
who Who to contact for assistance.

introduction General HTAR overview, analysis.
 htar-role Goals, scope, performance of HTAR.
 htar-files Three key HTAR files diagrammed.
 tar-comparison TAR and HTAR features compared.

htar-usage How to use HTAR.
 execute-line Required syntax, features, defaults.
 htar-errors Common errors conditions, warnings.
 limitations Known HTAR limitations, work-arounds.
 input-output How to use standard input, output.
 environment-variables Env. variables used by HTAR.
 hopper-htar HOPPER as an HTAR controller.

options HTAR options grouped, explained.
 action HTAR's action options (1 reqd).
 archive HTAR's archive option (always reqd).
 control HTAR's control options.

examples Annotated sample HTAR sessions.
 create-archive How to make an HTAR archive.
 retrieve-files How to extract HTAR files.
 checksum-use How to include CRCs during a creation run.
 rebuild-index How to rescue a lost HTAR index.
 many-files Specifying very many input files.
 find-input Specifying very many input files.
 between-machines Archiving between NONstorage machines.

index The structural index of keywords.
a The alphabetical index of keywords.
date The latest changes to this document.
revisions The complete revision history.

HTAR Reference Manual - 48

Alphabetical List of Keywords

Keyword Description
------- -----------
a The alphabetical index of keywords.
action HTAR's action options (1 reqd).
archive HTAR's archive option (always reqd).
availability Where HTAR runs.
between-machines Archiving between NONstorage machines.
checksum-use How to include CRCs during a creation run.
control HTAR's control options.
create-archive How to make an HTAR archive.
date The latest changes to this document.
entire This entire document.
environment-variables Env. variables used by HTAR.
examples Annotated sample HTAR sessions.
execute-line Required syntax, features, defaults.
find-input Specifying very many input files.
hopper-htar HOPPER as an HTAR controller.
htar-errors Common errors conditions, warnings.
htar-files Three key HTAR files diagrammed.
htar-role Goals, scope, performance of HTAR.
htar-usage How to use HTAR.
index The structural index of keywords.
input-output How to use standard input, output.
introduction General HTAR overview, analysis.
limitations Known HTAR limitations, work-arounds.
many-files Specifying very many input files.
options HTAR options grouped, explained.
rebuild-index How to rescue a lost HTAR index.
retrieve-files How to extract HTAR files.
revisions The complete revision history.
scope Topics covered in this document.
tar-comparison TAR and HTAR features compared.
title The name of this document.
who Who to contact for assistance.

HTAR Reference Manual - 49

Date and Revisions

Revision Keyword Description of
Date Affected Change
-------- -------- ------
26Jan10 control New -H suboptions
 examples New example shows use of CRC checksums.

10Sep07 htar-role Member limit up to 68 Gbyte.
 limitations Member limit up to 68 Gbyte.

16May06 control Option -m directory role clarified.

08Aug05 hopper-htar Drag alternatives added.

12Jul05 introduction Roles, features expanded.
 execute-line -P role noted with -c.
 environment-variables
 TMPDIR role added.
 hopper-htar New section on HTAR controller.
 control Options -n, -P, -q added.
 create-archive
 -P added to example.
 retrieve-files
 HOPPER added as alternative.
 index New keywords added.

08Sep04 htar-role Parallel connections clarified (not PFTP).
 tar-comparison
 -L now recursive.
 execute-line Syntax clarified, -K added.
 htar-errors Error labels spelled out.
 limitations Standard input (-L), output (-O) enabled.
 environment-variables
 HPSS.conf role explained.
 action Option -K added.
 control New details on -F, -L, -M, -T.
 New -O option added.
 examples Using -F, -L details updated.
 index New keyword added.

17Nov03 htar-role Size and speed details updated.
 limitations Size and speed details updated.
 execute-line General transfers with -F clarified.
 action General transfers with -F noted.

23Jul03 between-machines
 New section on nonstorage archiving.
 index New keyword for section.
 examples More verbose, explicit HTAR output.
 tar-comparison
 Details updated for new features.
 limitations Only passwordless FTP servers allowed.
 control -F, -H, -M control options added.
 introduction Class of service clarified.

13May03 availability HTAR now runs under Linux/CHAOS.

HTAR Reference Manual - 50

 htar-role Use NETMON for performance data.
 execute-line Consistency file location under Linux.

24Jun02 htar-role Size and copy issues clarified.
 execute-line Y option added.
 Single-copy default now, dual with Y.
 limitations Maximum file size clarified.
 control -Y 150 for dual copy noted.

01May02 htar-errors Retrieval with filters problem noted.
 limitations Retrieval with filters problem noted.
 control -L use expanded.
 retrieve-files
 Example now treats filter problem.

17Oct01 options -S and -h roles clarified.
 Options section subdivided.
 index New keywords for subsections.

20Aug01 entire First edition of HTAR manual.

EJG (26Jan10)

UCRL-WEB-200720
Privacy and Legal Notice (URL: http://www.llnl.gov/disclaimer.html)
EJG (26Jan10) Contact on the OCF: lc-hotline@llnl.gov, on the SCF: lc-hotline@pop.llnl.gov

http://www.llnl.gov/disclaimer.html

